

Strategic Water Supply Assessment

COMMUNITY WORKSHOP #4

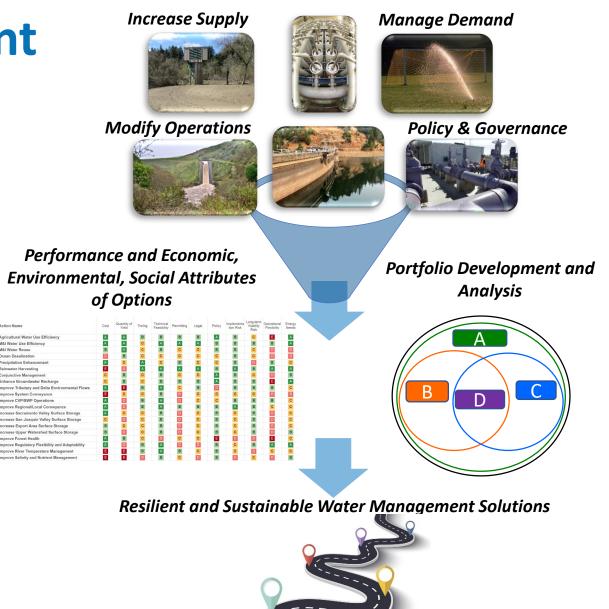
October 25, 2022

Workshop Agenda: Strategic Water Supply Assessment

- Assessment Overview
- Water Management Alternatives
- Alternatives Evaluation Process
- Summary of Initial Evaluation
- Next Steps
- **Q&A**

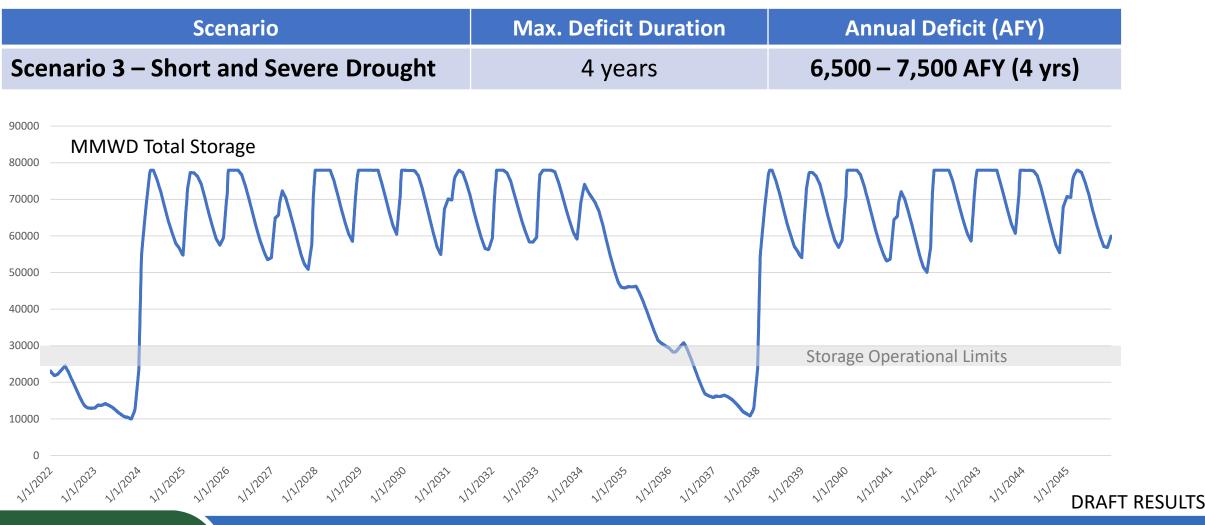
Strategic Water Supply Assessment: Schedule

- October 25 Public Workshop
- November Draft Portfolios and Strategies
- December/January Recommended Roadmap(s)


Assessment Overview

Key Project Scope Elements

Water Supply Assessment Process

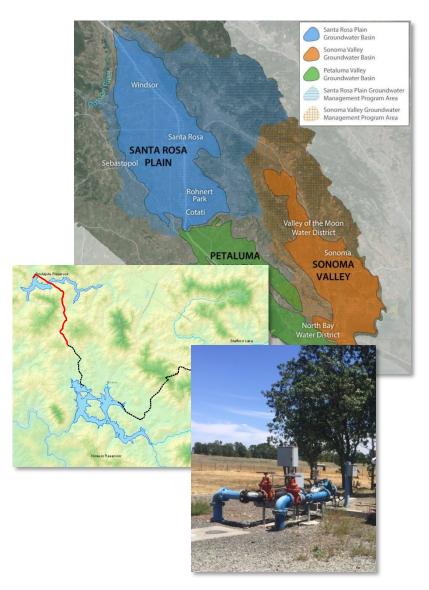

- Consider a broad range of water management alternatives
- Identify most promising alternatives
- Evaluate alternatives for performance and other economic, environmental, and social criteria
- Explore strategic combinations of alternatives
- Develop roadmap with specific project, pathways, and triggers to achieve resilient and sustainable solutions

Summary of DRAFT Scenarios

- Scenario findings
 - Scenario 1 drought results in the highest short-term deficit
 - Scenario 2 conservation savings reduces the deficit
 - Scenario 3 with four-year drought results in the highest overall deficit
 - Scenario 4 with extended droughts creates a challenge of *persistence*
 - Scenario 5 with reduced treatment capacity results in *diversification* challenge

Scenario 3 – Planning Level Simulations Provide Estimate of Deficit

8

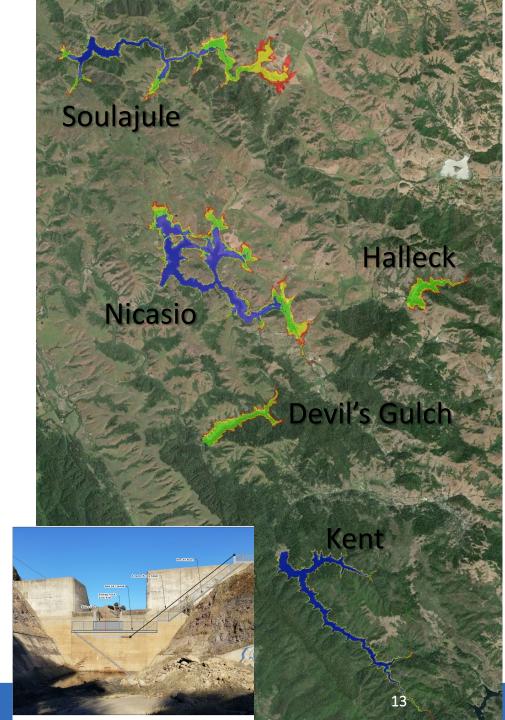

Water Management Alternatives

Water Management Alternatives Considered

- Sonoma-Marin Partnerships
- Local Surface Storage
- Water Transfers with Conveyance through Bay Interties
- Desalination
- Recycled Water
- Water Conservation

Sonoma-Marin Partnerships

- 1. Maximize Use of Sonoma Water (Existing Facilities)
- 2. Maximize Use of Sonoma Water (Resolve Conveyance Bottlenecks)
- 3. Maximize use of Sonoma Water (Dedicated Conveyance to Nicasio Reservoir)
- 4. Groundwater Well Rehabilitation
- 5. Regional Groundwater Bank

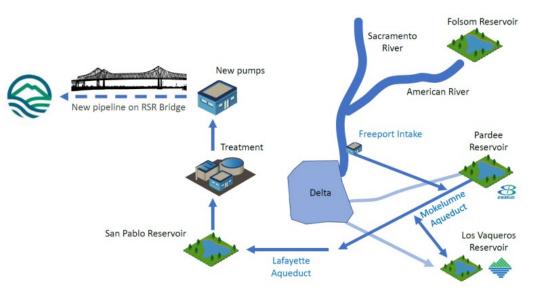


Sonoma-Marin Partnership Options Yield and Cost Summary

Option	Potential New Supply (AFY)	Capital Cost (\$M)	Annual O&M Cost (\$M)	Cost Range Estimate (\$/AF)
1. Maximize Sonoma Water Supply (Existing Facilities)	1,500			\$1,300
2. Maximize Sonoma Water Supply (Resolve Existing Conveyance Bottlenecks)	2,500	\$16-50	\$3	\$2,100 – 2,900
3. Maximize Sonoma Water (Dedicated Conveyance to Storage)	4,000	\$60 - 90	\$3 - 5	\$2,700 – 3,000
4. Sonoma Groundwater Well Rehab	2,000	\$3	\$3	\$1,400 - 1,600
5. Regional Groundwater Bank	2,500	\$10	\$3-4	\$1,500 - 2,000

Local Storage Augmentation

- 1. Local Surface Storage Enlargement
- 2. New Surface Storage
- 3. Adjustable Spillway Gates



Local Surface Storage Options Yield and Cost Summary

Option	Potential New Supply (AFY)	Capital Cost (\$M)	Annual O&M Cost (\$M)	Cost Range Estimate (\$/AF)
1. Surface Storage Enlargement (20 TAF @ Soulajule, Nicasio, or Kent)	5,000	\$105 – 170	\$3	\$1,700 – 2,400
2. New Surface Storage (10 TAF @ Devil's Gulch or Halleck)	2,500	\$200 - \$300	\$3	\$4,100 – 6,100
3. Adjustable Spillway Gates (Kent, Nicasio, Soulajule, and Alpine)	1,300	\$20-40	\$1	\$1600 — 2,300

Water Purchases with Conveyance through Bay Interties

- 1. EBMUD Intertie (Sac Valley purchases)
- 2. CCWD Intertie (Sac Valley purchases)
- 3. North Bay Aqueduct Intertie (Sac Valley purchases)
- 4. SFPUC Intertie (Golden Gate Bridge)

Water Purchases with Conveyance through Bay Intertie Options Yield and Cost Summary

Option	Potential New Supply (AFY)	Capital Cost (\$M)	Annual O&M Cost (\$M)	Cost Range Estimate (\$/AF)
1. EBMUD Intertie	5,000	\$111	\$7-9	\$2,600 – 2,900
2. CCWD Intertie	5,000	\$280	\$7-9	\$4,300 - 4,600
3. North Bay Aqueduct Intertie	5,000	\$346 – 410	\$6-8	\$4,800 - 5,800
4. SFPUC Intertie	1,000	\$31	\$1-2	\$2,900 – 3,200

* EBMUD, CCWD, and NBA interties assume a maximum of 20,000 AF of Temporary transfer supplied over 4-year dry period

Desalination

- 1. Marin Regional Desalination Facility
- 2. Containerized Desalination Facility
- 3. Bay Area Regional Desalination Facility
- 4. Petaluma Brackish Desalination Facility

Desalination Options Yield and Cost Summary

Option	Potential New Supply (AFY)	Capital Cost (\$M)	Annual O&M Cost (\$M)	Cost Range Estimate (\$/AF)
1. Marin Regional Desalination Facility				
5 MGD (stand alone)	5,600	\$234 - 260	\$12- 13	\$4,200 - 4,600
5 MGD (expandable)	5,600	\$246 - 274	\$12- 13	\$4,400 - 4,900
10 MGD (expandable)	11,200	\$320 - 331	\$20 – 22	\$3,300 - 3,400
15 MGD	16,800	\$373 - 401	\$28 – 29	\$2,800 - 2,900
2. Containerized Desalination Facility (5.4 MGD)	6,050	\$121 - 132	\$12 – 13	\$2,700 – 2,900
3. Bay Area Regional Desalination Facility (5 MGD)	5,600	\$253 — 268	\$5 - 6	\$3,300 – 3,800
4. Petaluma Brackish Groundwater Desalination Facility (5 MGD)	5,600	\$105 – 175	\$3 – 4	\$1,500 – 2,500

Water Reuse

- 1. Recycled Water expansion of non-potable reuse systems: Peacock Gap and San Quentin
- 2. Indirect Potable Reuse (IPR): Advanced treatment, conveyance to Kent Lake
- 3. Direct Potable Reuse (DPR) Central Marin Sanitation Agency (CMSA):
 - Raw Water Augmentation CMSA to Bon Tempe Lake
 - Treated Water Augmentation CMSA to distribution system
- 4. Direct Potable Reuse (DPR) Regional
 - Raw Water Augmentation CMSA, Las Gallinas Valley, SASM to Bon Tempe Lake

Water Reuse Options Yield and Cost Summary

Option	Potential New Supply (AFY)	Capital Cost (\$M)	Annual O&M Cost (\$M)	Cost Range Estimate (\$/AF)
1. Recycled Water Expansion				
Peacock Gap	285	\$22 - 30	\$0.2 - 0.3	\$5,000 - 5,600
San Quentin	154	\$13 - 15	\$0.2	\$3,900 - 4,500
2. Regional Indirect Potable Reuse (IPR)	7,300	\$427 - 477	\$9 - 11	\$4,200 - 4,800
3. CMSA Direct Potable Reuse (DPR)				
Raw Water Augmentation	4,480	\$165 - 183	\$9 — 11	\$3,900 - 4,500
Treated Water Augmentation	4,480	\$117 - 131	\$8 – 10	\$3,200 - 3,600
4. Regional Direct Potable Reuse (DPR)	7,300	\$392 – 439	\$16 - 19	\$4,900 - 5,600

Water Conservation Project Summary

- 2045 Adjusted Water Use
 - 2045 demands: 27,427acft, 15% reduction in projected demands
 - 106 GPCD
 - **73 R-GPCD**
- Cumulative Savings in 2045: 22,515 acft
- UPDATED Cost to Fund Conservation as Supply
 - District Cost: \$1,792/acft
 - Annual Budget Estimate: \$1.7M for incentives and associated program management
 - Does not include School Education Program and other non-incentive based program expenditures
 - Customer Cost: \$2,883/acft
 - Estimated hardware, installation, and maintenance costs for each incentivized program

Water Conservation Project

	Water Conservation	Past Annua	Participation
	Project (Annual Participation)	Pre-Drought	2021 Drought
AMI Leak Letter Notifications (/yr)	1,250	1,140	1,601
Non-Functional Turf Conversion (sqft/yr)	70,000	0	0
Turf Conversion (sqft/yr)	100,000	7,736	410,000
Pool Covers (/yr)	90	12	399
SMART Irrigation Controllers (/yr)	100	50	480
Conservation Assistance Program (/yr)	500	195	667
Laundry to Landscape Graywater Kits (/yr)	40	5	44
Rain Barrels (gallons/yr)	15,000	460	43,497

Regulatory Driven Project

- Regulatory Driven Project builds on the savings projected in Option 1: Water Conservation Project
- Water Savings Estimate resulting from adoption of strict landscape codes and associated enforcement:
 - 2045 demands: 25,875 acft
 - 100 GPCD (vs 106 GPCD)
 - 69 R-GPCD (vs 73 GPCD)
- Cost to Fund a Regulatory Driven Project
 - District Cost: ~\$4,000/acft
 - Customer Cost: ~\$3,700/acft

Regulatory Driven Project

Regulations and Enforcement would need to be developed and would require:

- Enforcement of water budgets and penalties
- Expanded Water Efficient Landscape Ordinance regulations
 - Limit turf installations in all new development and remodels
 - Only allow low water use plants, drip irrigation in all new development and remodels
 - Prohibit non-functional turf in existing non-residential sites
 - Prohibit turf in front yards and limit allowable turf area in existing single-family homes
- Indoor fixture standards/requirements
- Retrofit on Resale and/or Change of Customer
 - Ensure fixture, landscape, and irrigation requirements are met.
- Consider community impact of deeper demand reductions particularly to landscapes and the non-residential sector.

Water Conservation Options Yield and Cost Summary

Option	Potential Demand Reduction (AFY)	Capital Cost (\$M)	Annual O&M Cost (\$M)	Cost Range Estimate (\$/AF)
1. Water Conservation Project	4,000		\$1.7	\$1,800
2. Regulatory Driven Project	5,560		\$5.0	\$4,000

* As presented to Board on 9/6. Water savings estimated for 2045.

Maddaus review underway

Alternatives Evaluation

Goals of Evaluation Process

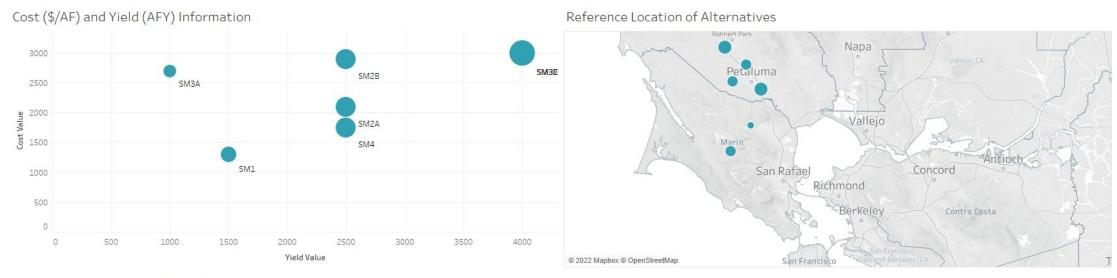
- Help discern differences between alternatives
- Illustrate positive and challenging characteristics associated with alternatives
- Identify synergies and challenges of alternatives
- Support eventual strategy and portfolio development process

Evaluation of Water Management Alternatives

Performance Criteria

- How well do each of the alternatives resolve system performance challenges during critical dry period?
 - Manage MMWD reservoir storage above operational reserve storage (30,000 AF)
 - Reduce potential delivery shortages
- Evaluation Criteria
 - How to compare alternatives that have similar levels of "performance"?
- Application Approach
 - How do individual alternatives perform?
 - What combination of alternatives could be considered?
 - What portfolio strategy is most strategic?

Evaluation Criteria


Criteria	Description	Measurement
Yield	Estimate of new supply or reduced demand option can provide during dry years.	AF
Cost	Cost per acre-foot of supply or demand reduction.	\$/AFY
Timing	Estimate of time required before project could be implemented considering planning, design, permitting, and implementation.	Years before alternative could begin operation
Reliability	Reliability of supply during periods of dry year need	5-pt qualitive scale
Flexibility	Degree to which the option could be operated (or implemented) across a wide range of hydrologic conditions by having ability to adjust the magnitude of operation each year to meet required conditions	5-pt qualitive scale
Environmental	Anticipated positive or negative impacts on the natural environment.	5-pt qualitive scale
Feasibility	Maturity of the concept and technical ability to implement.	5-pt qualitive scale
Energy	Estimated change in energy required to implement and operate.	KWH/AF
Permitting/Legal	List of permits required and status if option has begun permitting process.	5-pt qualitive scale
Social	Description of positive or negative socioeconomic effects.	5-pt qualitive scale
Jurisdiction	Primary jurisdiction for implementation	5-pt qualitive scale
Public Acceptance	Anticpated public acceptance	5-pt qualitive scale

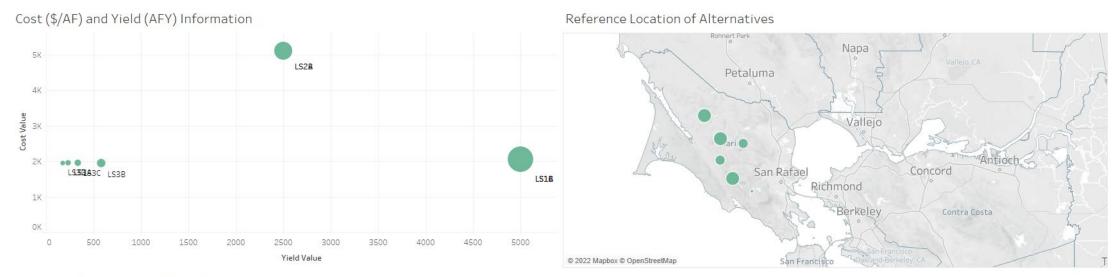
Initial Evaluation Summary

Water Management Alternatives Considered

- Sonoma-Marin Partnerships
- Local Surface Storage
- Water Transfers with Conveyance through Bay Interties
- Desalination
- Recycled Water
- Water Conservation

Sonoma-Water Partnerships

Evaluation Summary of Alternatives

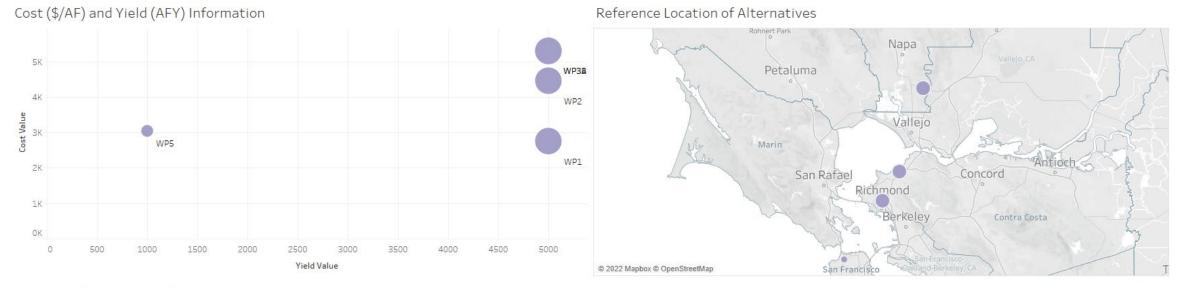

Code	Name	Yield Rating	Cost Rating	Timing Rating Reliability Rating Flexibility Rating	Feasibility Rating	Environmental Rating	Energy Rating	Permitting/Legal Rating	Social Rating	Jurisdiction Rating	Public Acceptance Rati
SM1	Maximize Use of Sonoma Water - Existing Facilities	Theid Rating	cost Ruting	Thing Rocking Rechability Rocking Textonicy Rocking			Energy Ruting		Social Racing	itating	
SM2A	Maximize Use of Sonoma Water - Resolve Bottlenecks										
SM2B	Maximize Use of Sonoma Water - Resolve Bottlenecks+South Transmission										
SM3A	Maximize Use of Sonoma Water - Dedicated Conveyance Stafford to Nicasio										
SM3B	Maximize Use of Sonoma Water - Dedicated Conveyance Kastania to Nicasio										
SM3C	Maximize Use of Sonoma Water - Dedicated Conveyance Cotati to Soulajule										
SM4	Regional Groundwater Bank										1

- Maximizing use of Sonoma Water supply provides moderate additional supply at low cost; immediate implementation; highly flexible
- **Resolving conveyance bottlenecks** will increase supply at moderate cost; reliable at lower quantities in drier years; flexible operations; and low environmental and permitting impacts
- Dedicated conveyance to MMWD storage can increase yield at higher cost; improves reliability; modest environmental, permitting, and jurisdiction complexities with new conveyance

1.000

5.000

Local Storage Augmentation



Evaluation Summary of Alternatives

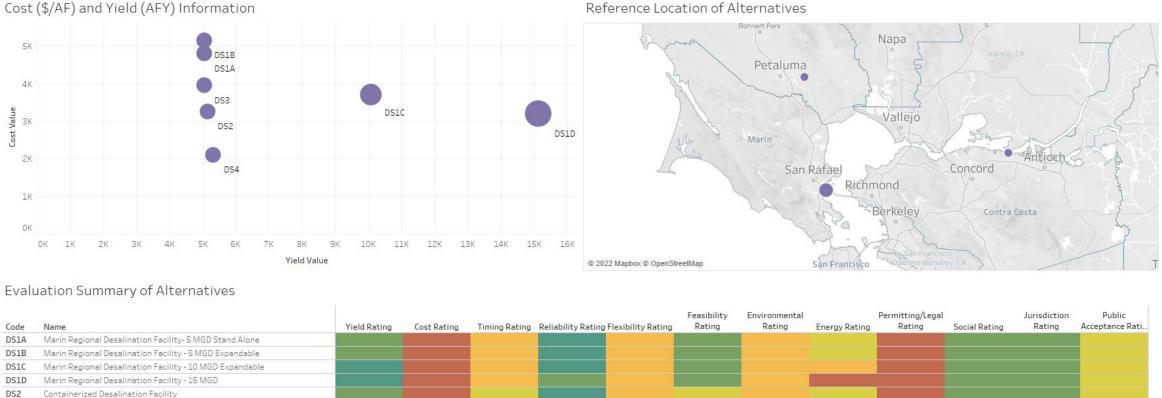
Code	Name	Yield Rating	Cost Rating	Timing Rating Reliability Rating Flexibility Rating	Feasibility Rating	Environmental Rating	Energy Rating	Permitting/Legal Rating	Social Rating	Jurisdiction Rating	Public Acceptance Rati
LS1A	Soulajule Enlargement						1				
LS1B	Nicasio Enlargement										
LS1C	Kent Enlargement	()									
LS2A	Halleck Reservoir										
LS2B	Devil's Gulch Reservoir										
LS3A	Movable Spillway Gates - Soulajule										
LS3B	Movable Spillway Gates - Nicasio										
LS3C	Movable Spillway Gates - Kent										
LS3D	Movable Spillway Gates - Alpine										

- Storage augmentation will produce new supply at moderate cost; reliable in most years; low energy and carbon footprint; potential for moderate to high environmental and social impacts
- New storage is likely to produce lower yields at higher costs; environmental impacts and permitting challenges are likely high
- Movable spillway gates will generate relatively low to moderate yield at low cost; early implementation; high flexibility; likely lower environmental and permitting challenges

Water Transfers with Conveyance through Bay Interties

Evaluation Summary of Alternatives

					Feasibility	Environmental		Permitting/Legal		Jurisdiction	Public
Code	Name	Yield Rating	Cost Rating	Timing Rating Reliability Rating Flexibility Rating	Rating	Rating	Energy Rating	Rating	Social Rating	Rating	Acceptance Rati
WP1	EBMUD Intertie										
WP2	CCWD Intertie										1
WP3A	NBA Intertie - MMWD										
WP3B	NBA Intertie - Sonoma Aqueduct										
WP5	SFPUC Intertie										


- Water Transfers: provide moderate additional supply; high flexibility; reliability is uncertain in critical year market and Delta regulations; complex permitting involving multiple jurisdictions
- Dependence on use of third party conveyance and treatment increases uncertainty and cost
- Delivery to MMWD involves significant new conveyance with increased costs

5.000

Measure Values

1.000

Desalination

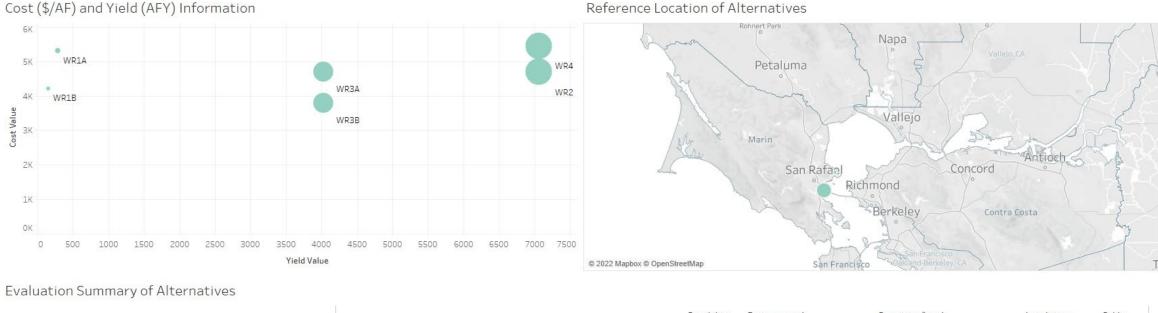
Reference Location of Alternatives

- **Desalination alternatives** will produce high new supply at high cost; highly reliable supply; less flexible; higher energy • use, environmental impact, and permitting complexity; requires vote by customers
- Petaluma Brackish Groundwater Desalination likely to produce moderate to high supply at moderate cost; • implementable more quickly; likely moderate impacts; reliability is not yet known (conceptual nature of alternative)

Bay Area Regional Desalination Facility

Petaluma Brackish Groundwater Desalination Facility

DS3

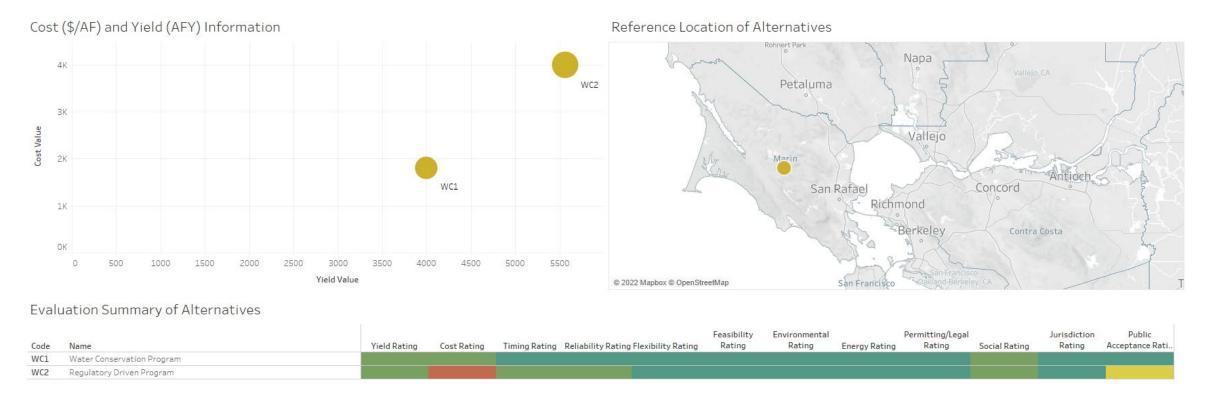

DS4

5.000

Measure Values


1.000

Water Reuse



	L Company				Feasibility	Environmental		Permitting/Legal		Jurisdiction	Public
Code	Name	Yield Rating	Cost Rating	Timing Rating Reliability Rating Flexib	ility Rating Rating	Rating	Energy Rating	Rating	Social Rating	Rating	Acceptance Rati
WR1A	Recycled Water Expansion - Peacock Gap	1									
WR1B	Recycled Water Expansion - San Quentin										
WR2	Regional Indirect Potable Reuse (IPR)										
WR3A	CMSA Direct Potable Reuse (DPR) - Raw Water Augmentation										
WR3B	CMSA Direct Potable Reuse (DPR) - Treated Water Augmentation										
WR4	Regional Direct Potable Reuse (DPR)										

- Recycled Water projects provide low yield at high costs; reliability is high; negative impacts are unlikely
- IPR and DPR alternatives provide high yield at high costs; reliability is high; moderate to high energy use and environmental challenges; permitting is likely complex; DPR is further challenged with yet unestablished state regulations; first of kind project

Water Conservation

- Moderate supply (demand reduction); early implementation; highly flexible; and positive environmental, energy, and permitting; jurisdiction within Marin
- Larger program will increase yield at higher cost, may be less reliable, could face public acceptance challenges

Moving Toward Strategies and Portfolios

- Strategies a particular plan of action or policy designed to achieve the overall water management goals
- Portfolios a combination of actions designed to implement a particular strategy
- Recognizing no singular alternative is likely to achieve all goals
 - How to balance long-term and shorter-term actions?
 - Are some alternatives synergistic? Can one set of alternatives amplify the benefit of other alternatives or preclude others?
 - Develop select strategies and associated portfolios for testing performance

Next Steps

Next Steps

- Maddaus review of conservation as water management alternative
- Integration of water management alternatives into decision support model
- Structuring strategies and portfolios and roadmap strategies
- Evaluate the performance of portfolios across range of scenarios
- Analysis of financial impact
- Upcoming schedule dates TBD
 - Public Workshop
 - Draft Portfolios and Strategies
 - Recommended Roadmap(s)

Attendee Questions & Comments

Instructions for indicating you have a question/comment

If watching from a computer or smart device:

Use the raise hand if feature in Zoom

If listening from a phone:

Dial *9 to let the Zoom host know your hand is raised